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ON VAPORIZATION OF MIST BY RADIATION 
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Abstract-A variety of different evaporation regimes are identified for the steady vaporization of a 
radiantly heated spherical particle. Formulae for the vaporization rate are obtained in many of these 
regimes. As an application of the results, the evaporation time for a water droplet in a mist is estimated 

for various radiant energy fluxes. 

NOMENCLATURE 

a constant defined in equation (35) 
[dimensionless]; 
rate factor for gasification [g/cm%]; 
specific heat at constant pressure for 
the gas [Cal/g degK] ; 
average velocity in the direction nor- 
mal to the surface for vapor mole- 
cules in the gas [cm/s]; 
diffusivity of the vapor in the gas 
[g/cm ~1; 
activation energy for gasification 
[cal/mole] ; 
incident radiant flux [caljcmes]; 
absorption coefficient of the con- 
densed material [cm-r]; 
heat of vaporization at temperature 
TO PM ; 
net mass flux [g/cm%] ; 
mass flow rate [g/s] ; 
ambient pressure [atm]; 
equilibrium vapor pressure [atm]; 
constant reference equilibrium vapor 
pressure, evaluated at temperature 
Tr [atm] ; 
vapor pressure [atm]; 
radius of the sphere [cm]; 
universal gas constant [various units]; 
initial radius of the sphere [cm]; 
radial distance from the center of the 
sphere [cm] ; 

* Present address: Dept. Aerospace and Mechanical 
Engineering Sciences,Universityof California, San Diego, 
La Jolla, Calif. 

T, 
Tb, 

To, 

temperature in the gas [OK]; 
boiling (or sublimation) temperature 
at the local ambient pressure [‘K]; 
temperature of the condensed 
material [“K]; 
a reference temperature [OK] ; 
ambient temperature at r = -J [OK]; 

normal boiling point [“K]; 
time [s]; 
molecular weight of the vapor 
[g/mole1 ; 
average molecular weight of the gas 
k/moM; 
mass’fraction of the vapor in the gas 
[dimensionless]; 
saturation mass fraction of vapor at 
r = r) [dimensionless]; 
evaporation coefficient [dimension- 
less] ; 
thermal conductivity of the gas 
[Cal/cm s degK]; 
mass rate at which molecules leave 
the condensed material [g/cm%]; 
density of the condensed material 
k/cm31 ; 
ambient density [g/ems]; 
density of vapor molecules in the gas 
k/cm31 ; 
surface energy of the condensed 
material [cal/cme]. 

Subscripts 
0, conditions in the gas at the surface of 

the sphere; 
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%. conditions at I’ = x : 
c. s. r. ;ij subscripts on R. identify radii. 

defined in equations (27). (23) and 
(40). respectively, at which transitions 
in the gasification mechanism occur. 

1. LNTRODUCTJOX 

WE SHALL consider a solid or liquid sphere (in 
an infinite and uniform gaseous atmosphere) 
that is subjected to a time independent, spatially 
uniform radiant energy flux. The sphere will 
be assumed to be nearly transparent to the 
incident radiation, and the absorption coefficient 
vvill be assumed to be constant, vvhence energy 
is absorbed at a constant and uniform rate 
per unit volume.* The absorption of energy will 
cause the sphere to vaporize or sublime, and the 
principal objective of our study is to determine 
the steady-state vaporization or sublimation 
rate. By “steady,-state”, we mean that time- 
dependent terms in the governing conservation 
equations are neglected. This approximation 
has been justified for burning and vaporizing 
droplets subjected only to molecular transport 
processes [I], and should also be applicable to 
the present system provided the rate of ab- 
sorption of radiant energy is not extremely 
large. We shall obtain the steady-state gasi- 
fication rate of the sphere under a number of 
different sets of conditions. 

First we shall discuss the general interface 
molecular conservation formula (the Knudsen 
equation), from which we shall infer the gasi- 
fication rate when heat conduction is negligible. 
Next we shall consider unopposed surface rate 
processes, including the effect of heat conduc- 
tion in the gas. Finally we shall treat systems 
that maintain surface equilibrium, considering 
first heat conduction (in the gas) alone, next 
both heat conduction and molecular diffusion 
(in the gas), and finally the effect of surface 
tension. The results are applied to the calcula- 
tion of the evaporation time of an irradiated 
water droplet.; 

* M’e neglect any effects arising from differences be- 
tween the index of refraction of the sphere and that of 
its surrounding medium. 

t In what follows, the terms gasification, sublimation 
and vaporization will be used interchangeably. 

2. THE KSVUDSES EQUATlOX 

Knudsen [2] vvas the frst to recognize that the 
net rate of efflux of molecules from the surfaces 
of a condensed material is the difference between 
the rate at which surface molecules enter the gas 
and the rate at vvhich gas molecules return to the 
surface. Expressed in terms of the mass flov\ 
rate, Knudsen’s equation is 

111 = v - 5 pc cc. (1) 

where the vacuum vaporization rate v and the 
evaporation coefficient a (the “sticking” fraction 
of molecules that strike the surface) may both 
reasonably be assumed to depend only upon the 
temperature of the surface. Basically, equation 
(1) alrrnys determines the vaporization rate of 
the condensed material; the rest of this paper is 
concerned merely with the evaluation of the 
terms appearing on the right-hand side of 
equation (1). 

It is useful to distinguish two distinct classes of 
condensed materials. For some materials (identi- 
fied as class A) the probability of an incident 
molecule attaching itself to the surface is so 
small that one cannot conceive of an experiment 
for measuring the last term in equation (1). For 
materials of class A, the relationship a = 0 

either is precisely correct or represents an 
excellent approximation fcr all environmental 
conditions, and, empirically. 

Y = B exp [-E,‘ROTo]. (3 

where the activation energy E is constant by 
definition and the rate factor B (which some- 
times depends weakly upon the surface tempera- 
ture TO) may also be assumed to be approxi- 
mately constant. Condensed materials vvith 
complex structures (such as Plexiglas and 
Teflon) belong to class A. 

For other materials (identified as class B). a is 
measurable, and Y may be related to a by applying 
equation (1) to a hypothetical experiment in 
which the vapor pressure is adjusted so that 
surface equilibrium prevails. Since m = 0 in 
equilibrium. if we assume that the vapor 
behaves as an ideal gas then equation (I) yields 

Y = a p,J[27r(R”/ W)To]r/“, (3) 



ON VAPORIZATION OF MIST BY RADIATIO% 577 

where the formulae 

pn = PC/(RO/ W)To, 

cr = [(R”/ W)To/2x]l’e, 

and 

p” = pe 

of absorption of energy in the sphere to the 
energy flus leaving the sphere, thus obtaining: 

413 TT RJ F k = 4~ R” m [L + m9/2pa - m’/I!p”], 

(7) 

have been employed. Over a sufficiently limited 
temperature range, one may employ the equation 

Pe = (pr exp [L W/R”Tr]} exp I--LW/ROTo] (4a) 

in which the last two terms represent the change 
in the (ordered) kinetic energy of the material 
leaving the sphere. Since generally p B pa, the 
last term in equation (7) is generally negligible 
compared with the term preceding it, and use 
may be made of the ideal gas equation of state 
in order to cast equation (7) into the dimension- 
less form for the equilibrium vapor pressure and, when 

more accurate data are not available, one may 
use Trouton’s rule (which states that the molar R Fk/3L m = 1 f m’(RO/P)? T$2pz L. (7n) 
entropy of vaporization is 21 Cal/mole degK at 
the normal boiling point) to obtain 

Unless the vaporization rate is very large, the 
ordered kinetic energy of the gas adjacent to the 

pe = exp [IO+51 exp [ - 10.5 (~:/To)] atm. (4b) surface will be small compared with the change 

Equations (3) and (4) show that equations (2) 
in thermal energy in the gasification process 

and (3) assume the same functional form pro- 
( viz. the enthalpy of vaporization), whence the 
last term in eauation (7a) will be small com- 

vided we set pared with unity. In this’ case, TO disappears 
E=LW (5) from equation (7a), and m is determined from 

and equation (7a) directly, regardless of the form 

B = ap, exp [L W/R’JT,]/[2r(RO/ W)To]lPz. (6) 
taken by equation (l).: Thus, we obtain 

m = R Fk/3L. (8) 
The only essential difference between materials 
of the two classes is therefore that the last term Equation (1) now merely serves to determine the 

in equation (1) is absent for materials of class temperature TO. Since the equation of mass 

A. Materials falling within class B include water, conservation for the sphere implies that 

many organic liquids, and metals; for metals dR/dt = - m/p, (9) 
with monatomic vapors usually a = I, [3]. 

equation (8) enables us to determine the radius 

3. THE VAPORIZATION RATE WHEN THERE IS 
of the sphere as a function of time through a 

NO HEAT CONDUCTION IN THE GAS 
simple integration; 

The preceding formulae imply that, in order R = Ri exp [-(Fk/3pL)t]. (10) 
to determine m from equation (I), we need only 
specify To and pV. In order to relate pV simply to 
TO, we shall assume (only in this section) that 
pv is a known constant (viz. the initial partial 
pressure of the vapor in the ambient atmos- 
phere); the value assigned to pu cannot exceed 
pa.* The remaining parameter TO is determined 
by an energy balance for the sphere. 

NegIecting molecular transport processes in 
the gas, in a steady state we may equate the rate 

* Throughout this paper we assume that the ambient 
pressure pa is a known constant. 

The characteristic evaporation time appearing 
in equation (10) is 

tl = 3pLIFk. 

From equations (7a) and (8) we infer that the 

t Throughout this paper we assume that the tempera- 
ture inside the sphere is uniform. The thermal conductivity 
of the condensed material is usually high enough to make 
this a good approximation. 

: We assume here (and often in what follows) that the 
variation of L with TO is negligible. Generally TO remains 
within sufficiently narrow bounds for this to be a good 
approximation. 



last term in equation (7a) becomes of order unity 
\vhen 

[R FX-(R”I’#‘)To~3Lp&2 L = 1. (11) 

For large values of RFk (spheres subjected to 
extremely high radiation fluxes) and for small 
values of L and pa, the parameter in equation 
(11), and consequently the last term in equation 
(7a), may greatly exceed unity. When this 
condition is satisfied, equation (7a) yields 

m = [ZR F k &,‘3(RO/ CU)? T$““, (12) 

which is now coupled with equation (1) because 
To appears in equation (12). Neglecting the 
(usually relatively small) effect of the variation 
of TO, we see from equation (12) that m in- 
creases slowly Lvith (R F k) [m - (R F /c)“3 from 
equation Cl’), while m - (R Fk) from equation 
(8)] and that R’3 decreases linearly with time 
[see equation (9)]. A system that obeys equation 
(12) over part of its vaporization history will, of 
course, pass into the regime in which equation 
(8) is obeyed after R decreases to a value at 
which equation (11) is satisfied. The kinetic 
energy term in the surface energy conservation 
equation will be neglected throughout the 
subsequent analysis (i.e. it will be assumed that 
the parameter in equation (11) is small com- 
pared with unity). 

1. THE VAPORIZATION RATE WITH AN 

U&OPPOSED SURFACE RATE PROCESS 

The vaporization rate formulae obtained in 
the preceding section may be reasonably accurate 
provided the thermal conductivity of the gas 
surrounding the sphere is sufficiently low. In 
order to obtain an assessment of the effect of gas 
conductivity, molecular transport processes will 
be studied in the rest of this paper. When 
molecular transport effects are included, the 
general form of equation (1) is too complex to 
admit a simple analytical treatment. Therefore 
we shall study separately two limiting cases of 
equation (1). In the present section we shall 
neglect the last term in equation (1). In view of 
equation (2), equation (1) then becomes 

m = Bexp [- E/ROTo]. (13) 

The analysis in the present section will always be 

valid for materials of class A, and it Lvill also 
be valid for materials of class B Lvhen the system 
under study is far removed from the condition of 
surface equilibrium. Studies employing equa- 
tion (13) have been given previously [4]. In the 
next section we shall consider systems in lvhich 
the left-hand side of equation (1) is small 
compared with each term on the right-hand 
side. 

When the conductive energy transport from the 
surface of the sphere is taken into account, the 
energy balance for the sphere [equation (7)] 
becomes 

(4,‘3) pi R” Fk = ni L - 4 li R” X(dT/dr)o. (1-t) 

where the total (mass) vaporization 

ti ~4nlPm. 

The energy conservation equation 
around the sphere is* 

rate is 

for the gas 

vi1 cP dT/dr = d(4 TT r2 h dT/dr)ldr, (15) 

in which, according to the law of mass conscr- 
vation, ti is independent of r. The general 
solution to equation (15) is 

ril cp 
T=ai-bexp -4X, 

[ 1 (161 

where c[ and b are arbitrary constants. Since 
T = TO at r = R and T = T, at r = co, we find 
from equation (16) that 

, 

T=jTo--Tsexp -s - 
i [ .I 
U'o - Tm)exp [--%]I/ 

{l - exp [-4z]j. (17) 

Hence, 

(dT/dr)o = 

- $$ (~0 - Tm) {exp [&:I - I]-’ . 

(19 

* For simplicity, we assume throughout this paper that 
cp and X are constant. 
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Equations (14) and (18) yield the formula 

R F k/3L m = 1 f [cP (TO - T=)/L] 

{exp [R m cP/X] - 11-l (14a) 

for the energy conservation equation with heat 
conduction included. 

Equations (13) and (14a) comprise two in- 
dependent equations in the two unknowns m and 
To. When R m c,/X 9 1, the last term in equa- 
tion (14a) is small compared with unity, and 
heat conduction in the gas is negligible. Equation 
(14a) then reduces to equation (8), and the 
associated results (described previously) follow. 
Evidently [see equation (S)] the condition 

PFkc,/3 AL w 1 (19) 

roughly defines the boundary of the regime in 
which heat conduction effects are important; 
when the parameter on the left-hand side of 
equation (19) becomes less than unity, con- 
duction must be considered. Thus, heat con- 
duction is important at low radiant fluxes (F k) 
and must always be considered when R becomes 
sufficiently small. 

In the regime where heat conduction can be of 
paramount importance, R m cp/h & 1, and a 
reasonable approximation to equation (14a) is 
found (by expanding the exponential in powers 
of its argument) to be 

R F k/3L m = 1 + X(To - Tm)/L R m. (20) 

In view of equation (13), equation (20) may be 
treated as a quadratic equation for R as a 
function of TO. Solving the quadratic, we obtain 

R Fkk/3L m = l/2 (1 rt [I f 4 Fk A(To - T,)/ 

3Lz m2]11e}. (21) 

The resulting R dependence of m is quite com- 
plex; it is determined by the solution to the 
transcendental equation obtained by employing 
equation (13) to express the TO appearing in 
equation (21) in terms of nr. 

As R approaches zero, one can see from 
equation (20) that TO approaches Tm. By ex- 
panding equation (20) about R = 0, we find that 
(To - T,) as - L R m/X; i.e. TO becomes less 
than Tm. Thus, radiant heating becomes negli- 
gible in the terminal stage of vaporization, and 
heat conducted into the sphere from the ambient 

gas supplies the energy required to vaporize the 
last bit of material. The lower (negative) sign in 
equation (21) applies in this region. This sign 
continues to hold until ir, - TO attains its 
maximum value, determined by 

To - T, = - 3L”m’/4Fk A, 

at which point we must begin to use the upper 
sign in equation (21); (i.e. the negative sign 
holds for R < 3L m/2Fk and the positive sign 
holds for R > 3L m/2Fk). Heat is conducted 
from the gas into the sphere so long as R < R.,., 
where 

R,$ E 3L m/Fk, (22) 

in which m is evaluated from equation (13) by 
setting To = T,. At R = RI, TO = T,. For 
R > Rs, To > Ts and the radiant input supplies 
all of the energy required for vaporization as 
well as some heat conduction losses. When Tm is 
less than or equal to room temperature, repre- 
sentative gasification rates are very low (evapora- 
tion times are of the order of years) for R < R,; 
the present analysis will be applicable only to 
materials of class A in this regime because all 
materials of class B will be in surface equilibrium. 
Thus, so long as R, exceeds molecular dimen- 
sions,* radiant energy input is totally ineffective 
as a method for causing evaporation of small 
spheres composed of materials of class A. 

For R > R,, it is of interest to attempt to 
determine from equations (13) and (21) whether 
or not the conductive energy loss exceeds the 
convective energy flow [i.e. whether or not the 
last term in equation (20) exceeds unity]. 
Boundaries of regimes in which conduction may 
be large are determined by the formula 

X(To - T,)/L R m = 1. (23) 

If equation (21) is used to eliminate R from 
equation (23),t then [in view of equation (13)] a 
transcendental equation is obtained for TO. With 
a little algebra, we find this transcendental 
equation to be 

To - T, = 6L’ m’]F k A. (23a) 

* Often m is so small at TO = T- that Rs is less than the 
size of a molecule and the regime identified in this 
paragraph is nonexistent. 

t The upper (positive) sign in equation (21) holds 
throughout the regime R > Rs. 
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RH.S,cr equoflon(23a) 
const exp (-qJnst./T, ) 

FIG. 1. Schematic diagram of solution to equation (23a). 

The two sides of this equation are illustrated 
schematically in Fig. 1, from which it can be 
seen that either one or three solutions to the 
equation exist. A detailed analysis shows that 
three distinct solutions exist if and only if both 

and 
2R” T,/E < 1 

exp f- 2/[1 - (1 - 2R” Tm/E)lI’]) 

l/2 [l - (I - 2R’J T3o/E)“‘] - R”T,o/2E 

EXFk 
< 3ROL'flZ 

exp {- 2/[1 + (1 - 2RO T,/E)lrz]} 

< 112 [l +- (1 - 2R“ Too/E)“‘] - R” Tp/2E’ 

Representative estimates indicate that, unless 
T, is unreasonably large, both of these con- 
ditions are usually satisfied. Therefore the middle 
TO - T, curve in Fig. 1 is representative. 
Further calculation shows that the two upper 
intersections in Fig. 1 usually occur at un- 
reasonably large values of TO (which correspond 
to unreasonably large values of R and of Fk) and 
that the lower intersection usually occurs very 
near TO = T,. Therefore heat conduction losses 
appear to be dominant throughout most of the 
range of values of R > R, for which the para- 
meter in equation (19) is less than unity. 

Having inferred that heat conduction is 
dominant in the regime currently under study. 
we may obtain a rough estimate of the vaporiza- 
tion rate by neglecting unity in comparison to the 
last term in equation (20). Equation (20) then 
yields 

To = Tp + R’Fk/3X, 

which, when substituted into equation (13), 
gives 

m = B exp (-- E/‘[RO T, -i- R” F k R0/3h]). (34) 

The quadrature that must be performed to 
obtain R(t) after substituting equation (24) into 
equation (9) cannot be expressed in terms of 
elementary functions, but a representative 
evaporation time in this regime is roughly 

tz = (B/pR) exp {- E/[R” T, + R” Fk R’-‘/3A]l. 

5. THE VAPORIZATION RATE AT SURFACE 

EQUILIBRIUM 

The results of the preceding sections imply that 
m decreases as R decreases. For materials of 
class B we may therefore infer that, at some stage 
in the evaporation history of the sphere, surface 
equilibrium conditions are very nearly attained 
[see equation (l)]. As a very rough approxima- 
tion, one may assume that surface equilibrium 
is established suddenly as soon as To reaches T5, 

the boiling (or sublimation) point (correspond- 
ing to the ambient pressure) of the condensed 
material.* When TO < Tt,, equation (13) vvill 
then be invalid for materials of class B. Instead, 
the appropriate approximation to equation (1) 
will be 

pCo = [R,. exp (L W/ROT,)] exp [- L W/R”To]. 

(25) 

in which use has been made of equations (1) 
(with m = 0), (3) and (4a). Systems for which 
equation (25) replaces equation (13) are con- 
sidered in this section. 

For steadily vaporizing or burning liquid fuel 
droplets in the absence of radiant energy 
transfer, the approximation that To = Tb has 

* When TO > To, surface equilibrium is impossible 
because then the last term in equation (1) cannot be as 
large as Y. 
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been well justified [l]. Therefore, initially, we 
shall attempt to employ this same approxima- 
tion in the present problem. The statement 
TO = Tb is equivalent to an approximate solu- 
tion to equation (25), whence equation (14a) 
alone (with TO now a known constant) de- 
termines the vaporization rate m. Equation 
(14a) is difficult to solve for m. But, when heat 
conduction is of any importance, we expect 
equation (20) to be a reasonable approximation 
to equation (14a), and therefore we find, 
approximately, 

applicable throughout most of the (surface 
equilibrium) regime in which conduction must 
be considered. 

The diffusion equation for the vapor in the 
gas is 

rit d Y/dr = d(4rr t-2 D d Y/dr)/dr, (28) 

the solution to which is of the same form as the 
solution to equation (15).* 

Hence, 

m = R Fk/3L - Ji(Tb - Tm)/L R. (26) 

The corresponding characteristic vaporization 
time is 

Y = { YO - Y, exp [- (rir/4n DR)] 

- ( YO - Y,) exp [- (tir/4nDr)] ;/ 

(1 - exp [- (n’z/4rDR)]‘( 

and 

(d Y/dr)o = 

(29) 

ta = [Fk/3p L - x(Tb - T,)/pL l7?]-‘. 

Equations (14a) (with TO = Tb) and (26) both 
exhibit one interesting effect. As R decreases, 
the conduction loss becomes more and more im- 
portant, and m begins to decrease very rapidly. 
The value of m, in fact, approaches zero before 
R -+ 0 (if T, < Tb)! From equation (14a) or 
equation (26) we find that m -+ 0 when R + Rc, 
where 

- 4-$&R? ( YO - Yoc> [exp (ni/4rrDR) 

Conservation of mass of the vaporizing material 

R, s [3x(Tb - Tr)/F k]“‘. (27) 

The time required for complete vaporization is 
therefore infinite because when R reaches R, the 
entire radiant energy input is conducted away 
and no further decrease in R occurs. 

at the surface implies 

fi = ti Ya - 4rrR’D(d Y/dr)a, 

whence 

I - YO = ( YO - Y,) [exp (ti/4vDR) - 

This result constitutes a paradox since, when- 
ever TO > T,, the equilibrium vapor pressure at 
the surface exceeds that at infinity, and vaporiza- 
tion must occur at a non-zero rate. The reason 
for the paradox is, of course, that TO is a function 
of time (To # Tb). In order to compute the 
actual vaporization rate for R 5 Rc, we must 
consider the equation for the molecular diffusion 
of the vapor, employing equation (25) (instead 
of the formula TO = Tb) as a boundary con- 
dition at the surface of the sphere. Unless T, is 
very close to Tb, the value of R, given by 
equation (27) is within a factor of 10 of the limit- 
ing value of R for conduction to be of im- 
portance [as determined by equation (19)]. 
Therefore equation (26) and the approximation 
TO = Tb are of very restricted utility, and the 
rate equation derived below [equation (37)] is 

Since, by definition, 

Y = IVPJ PPa, 

equation (25) implies that 

YO = A exp [-L W/ROTo], 

where 

A = ( Wpr/ Wpn) exp [L W/ROT,]. 

Equations (34) and (32) yield 

exp [R m/-D] = (1 - Y,) {I - A 

(31) 

l] -1. 

(32) 

(33) 

(34) 

(35) 

exp [- L W/ROTo] l-1, (36) 

(since rir = 4r R’m). With A and Y, as known 
constants,7 equation (36) represents the inde- 
pendent relationship that is needed in addition 

* We assume that the diffusivity D is constant. 
t We assume that the variation in r is negligible. 



to equation (14a) in order to determine TO and 
111. 

Unfortunately eliminating TO between equa- 
tions (14a) and (36) yields a fairly complicated 
transcendental equation for m as a function of 
R even after the approximations (valid in the 
regime under study) R m c,/X < 1 and RmlD < 1 
are introduced. If we make the additional 
approximation that (7’0 - r,)/7-X < 1 (which 
is often reasonable in the regime under study), 
then this transcendental equation reduces to 

1 c R m/D Y, 
1 

f Rm/D 1 (37) 

where 

Y,, = A exp [(-L W/ROT,)] (38) 

is the mass fraction of vapor at infinity at 
saturated conditions. The further approxima- 
tion that R m/D Y, < 1 (which can be shown to 
be equivalent to (TO - T,)/T,, g ROT,/LW 
vvhen Y, = Y,, and which usually is not very 
accurate until R 4 R,) enables us to solve 
equation (37) explicitly for m. The result is 

1 * 
(39) 

In most problems, initially the ambient atmos- 
phere will be saturated with vapor (i.e. 
Y, = Y&, and equations (9) and (39) will 
therefore yield an exponential time decay of R 
[analogous to the result given in equation (lo)], 
with a characteristic evaporation time of 

t4 = [1 f h ROT;(l - YJo)/DL’W Y,](3pL/Fk). 

Equations (37) and (39) show that, provided 
Yc0 < Y,,, the vaporization rate m is positive 
for all values of R > 0. Thus the paradox is 
removed. However, with Y, = Y,,, the vapor- 
ization rate does become smaller after R drops 
to R,. This result can be inferred from equation 
(39) or from the formula for t4; the rate is 
decreased from that given in equation (8) by the 
factor 

[I - h R”T;(l - Y,,).:D Li CV YzJ-1. 

which is very small compared with unity when 
Y,,, is very small. Thus, radiantly heated 
sphere with R 2 R, will usually vaporize 
slowly. 

For large values of F k, the value of R, defined 
in equation (27) can be so small that the effects 
of surface tension would be expected to be of 
importance for R 2 R,. The surface tension of 
liquid droplets will always enter the picture at 
sufficiently small values of R; the criterion for it 
producing a measureable effect is roughly 
R 2 RT. where 

RT E 500/p L. (40) 

When R 5 RT, equation (25) must be replaced 
by PI 

pa0 = [pr exp [CL WR”Tr)l exp [C--L M/lR”To>l 

exp [(2uW/R p ROTo)]. (253) 

Consequently, the final factor in equation (25a) 
appears as an additional factor in equation (3-l). 
and equation (36) is modified accordingly. In 
equation (37), Y,,, is replaced by 

Y,, exp [(2uW/RpR”T4] 

and the additional factor (1 - 2o/RpL)-1 appears 
in front of the logarithm.* Equation (39) 
becomes 

which now makes equation (9) difficult to 
integrate even when Y, = Y,,. When 

2oIRpL --f 1, 

the quantity (1 - Zu/RpL)-1 approaches infinity 
and the terms involving u are dominant in 
equation (41). Although this limit is not reached 

* We neglect the dependence of the surface energy D 
upon TO. The surface energy is related to the surface 
tension s by D = s - TO ds/dTo. 
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until the sphere contains but a few molecules, 
we may obtain a rough estimate of m when 
R < RT by neglecting the terms that do not 
involve u. When YZ = Y,,. by substituting this 
simplified estimate into equation (9) and per- 
forming the integration, we find that the cube of 
the radius of the sphere decreases linearly with 
time; viz, 

R3 =I R; - [6u WD Y,,/p’RTm (1 - Yaos)] I, 
(42) 

from which the representative evaporation time 
is seen to be 

ts = R3 $R”7-,(1 - Y,,)/60 WD Y,,. 

Numerical evaluations show that surface tension 
effects greatly accelerate the evaporation rates of 
small droplets. 

Since the radius RT is often small compared 
with a molecular mean free path, one may ask 
whether molecular gas kinetic effects will mask 
the behavior deduced in the preceding para- 
graph (from continuum flow theory). Rough 
kinetic estimates indicate that any “temperature 
jump” [q at the surface of the sphere will be 
negligible. The preceding formulae should there- 
fore be approximately correct so long as the 
predicted vaporization rates do not approach the 
maximum rate given in equation (13). 

6. THE EVAPORATION TIME FOR A RADIANTLY 
HEATED WATER DROPLET 

As an application of the notions developed 
above, we shall consider the radiant vaporiza- 

Table 1. The physical constants employed in analysing 
the vaporization of a water droplet in saturated air 

PO 1 atm 
T, 293°K 
Tb 373°K 
CP 0.25 Cal/g degK 
I 5 x 10-j Cal/cm s degK 
D 3 x 10+ g/cm s -. 
W 30 g/mole 
W 18 g/mole 

540 Cal/g 
&RO = L W/R0 = 4850’K) 
Y P* 1.38 x 1O-2 
!, 1 g/cm3 
* 142 ergs/cm’ 
0 0.03 and 1 

tion of a water droplet in saturated atmospheric 
air at 20°C. The physical constants adopted for 
the calculation are given in Table 1. There is 
some disagreement in the value of the evapora- 
tion coefficient for liquid HsO; numbers cited in 
the literature range from [4] 0.03 to [3] 1. The 
more recent work appears to favor values near 
unity [7]. Since we do not wish to enter the 
argument, we carried out computations for both 
extreme values. 

The boundaries of the various vaporization 
regimes, defined by equations (11) (19). (22) and 
(40), are shown in Figs. 2 and 3.* The boundary 

conduclicn negligible 

k- -4 
10 - Eqwlibrium. 

dtffusion and conduction 

-5 
IO - 

Cequat1on (3911 

FIG. 2. Diagram of vaporization regimes of the water 
droplet if a = 0.03. 

dividing regimes of surface rate processes and 
surface equilibrium processes is not given by any 
of our previous formulae. It was determined by 
computing the rates for surface equilibrium and 
for surface rate processes and then noticing 
where these two rates became equal.7 In this 

* The surface rate regime in which R < RI [equation 
(2211 does not appear for water under the conditions 
chosen. 

t Where the rates are unequal, the lower rate is the 
correct one. 



-8 
10 1 

I .3 ,21 ,c! :’ 
- lJ5 IJ- 10' 

fi, Cal/& 5 

FIG. 3. Diagram of vaporization regimes of the water 
droplet if a = I. 

manner, it was found that, under our present 
conditions, the boundary can roughly be defined 
by equating the value of m given by equation 
(39) to the value of m given by equation (13) 
kvith TO = T,. Of course, transition from one 
regime to another is not always sharp; the loca- 
tions of the lines in the figures are accurate to 
only about a factor of 10 in R. If a = 0.03, 
Ri = 1 cm and Fk = lo6 Cal/cm%, for example, 
it can be seen from Fig. 2 that vaporization 
begins in a regime in which heat conduction is 
negligible and the change in kinetic energy upon 
gasification is important, enters a regime in 
which conduction is negligible and the enthalpy 
of vaporization limits the rate, passes through a 
regime in which heat conduction is important 
while the surface process is still a rate process, 
enters a regime in which surface equilibrium 
prevails and heat conduction and diffusion in 
the gas govern the rate, and finally emerges into 
the regime in which surface tension causes the 
droplet to disappear rapidly. 

At T, = 2O”C, Y,, is high enough so that the 
rate given by equation (39) (at Y, = Y,,) is 
not very much less than the rate given by 

equation (8). Consequently equation (39) is 
valid throughout most of the diffusion-con- 
duction regime. If T= were dropped to - 15 ‘C, 
then the consequent large decrease in Y,, would 
cause the rate given by equation (39) to drop 
markedly (by almost a factor of IOO), and a 
sizeable transition region, in which equation (37) 
would have to be used instead of equation (39), 
bvould develop in the diffusion-conduction zone. 
Also, the surface rate process-surface equi- 
librium boundary would be moved to somewhat 
lower values of R by the decrease in T,. The 
other boundaries would be unaffected. 

The evaporation rate m [as determined by 
equations (8), (12), (24). (39). or (41)] is listed as 
a function of Fk and R in Tables 2 and 3. The 
horizontal bars appearing in these tables mark 
the values of R at which transitions from one 
regime to another occur. The total time required 
for evaporation of a droplet of initial radius Ri 
is listed as a function of Fk and Ri in Tables 4 
and 5. 

From Table 2 it can be seen that for Fk 2 10’ 
Cal/% there is a rapid large decrease in nz when 
heat conduction sets in at R 2 10-J cm. This 
results in longer evaporation times at high values 
of Fk than would be indicated by extrapolation 
of the results for lower Fk (see Table 4). The 
value of m is so large in the region where surface 
tension is important that, for practical purposes, 
droplets disappear instantaneously as soon as 
they reach a size of roughly 3 x 10-j cm. The 
entry in Table 4 under Fk = 1 Cal/cm%, 
Ri = 10-j cm implies that bright sunlight 
(F ,- 1 kWjm’> will vaporize a representative 
droplet of mist with k - 30 cm-1 in about 1 h 
under our chosen conditions. Focused rays of 
the sun, or other energetic radiation sources, 
(Fk -+ lo6 to IO* Cal/cm%) can vaporize the mist 
droplet in a few milliseconds. or perhaps in less 
than 1 ms, if cz = 1 (see Tables 4 and 5). 

7. CONCLUDIKG RJ31ARKS 

One is tempted to use our results to speculate 
on a number of natural processes. For instance, 
should we not be able to calculate the time 
required for the morning sun to vaporize the 
mist that sometimes gathers above streams? 
Unfortunately (or, perhaps fortunately) natural 
processes such as this one are too complex to 
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conform to our simple picture; the gas properties 
are coupled with the behavior of the droplets, 
and additional phenomena (non-radial diffusion, 
natural convection, etc.) may set in. Our analysis 
contributes only one small piece to the puzzle. 

In conclusion, it is worth re-emphasizing the 
principal criticism of our study. Steady-state 
evaporation has been postulated. Since the time 
required to heat the droplet to its steady-state 
temperature is roughly independent of R (with 
volume heating), one might expect our anslysis 
to be valid, after a heat-up period, for droplets of 
sufficiently large initial radii. However, unsteady 
effects might also come into play in the transi- 
tion from one vaporization regime to another, 

and, for regimes spanning only one or two orders 
of magnitude in R, may completely obscure our 
computed vaporization rates. 
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R&urn&-Diffirents rCgimes d’Cvaporation sont identifies pour la vaporisation permanente d’une 
particule spherique chauffk par rayonnement. Des formules pour la vitesse de vaporisation sont 
obtenues dans la plupart de ces rigimes. En application des rlsultats, le temps d’lvaporation pour une 

gouttelette d’eau dans un brouillard est estimC pour divers flux d’energie de rayonnement. 

Zusammenfassung-Fiir die station&e Verdampfung eines durch Strahlung beheizten kugelfbrmigen 
Teilchens wird eine Anzahl verschiedener Verdampfungsarten festgestellt. Bei vielen dieser Vorgange 
erhiilt man Formeln fi.ir die Verdampfungsgeschwindigkeit. Als Anwendung der Ergebnisse wird die 
Verdampfungszeit eines Wassertriipfchens in Nebel bei verschiedenen Strahlungsintensititen 

abgeschltzt. 

AHHoTarpn-B CTaTbe PaCCalOTpeH pfiz paXWlfibfX pe*XifI,lOB CTaqtIOHapHOf-0 lTpOLleCCGi 

rlcnapemrn pa;rrraabao HarpeTofi cr@eprr~rec~oti YacT&tubt. &tR xttornx rta aTktx pemrlalos no- 
jI~~[eHbt fbop>lF.lbt ;~.xft onpe;reneaufi c~opocTn 5rcnapeHlrn. R r;allecToe npusrepa npIIJIenn\ro- 
CTII nozfyretrfibrs pe:sy.zbTaToB npoee;resa oqefuia BpeMefifr ruznapetum IialleJblirt no;lbr f3 

Tyatie ~nt3 paaxfwbfx noTof<off X~~IICTOR arreprm. 


